Posts

Showing posts with the label SINGLE PHASE INDUCTION MOTOR

Working Principle of 1-phase Induction Motor

Image
1-PHASE INDUCTION MOTOR For the motoring action, there must exist two fluxes which interact with each other to produce the torque. In d.c. motors, field winding produces the main flux while d.c. supply given to armature is responsible to produce armature flux. The main flux and armature flux interact to produce the torque.        In the single phase induction motor, single phase a.c. supply is given to the stator winding. The stator winding carries an alternating current which produces the flux which is also alternating in nature. This flux is called main flux. This flux links with the rotor conductors and due to transformer action e.m.f. gets induced in the rotor. The induced e.m.f. drives current through the rotor as rotor circuit is closed circuit. This rotor current produces another flux called rotor flux required for the motoring action. Thus second flux is produced according to induction principle due to induced e.m.f. hence th...

Double Revolving Field Theroy

Image
single phase induction motor According to this theory, any alternating quantity can be resolved into two rotating components which rotate in opposite directions and each having magnitude as half of the maximum magnitude of the alternating quantity.        In case of single phase induction motors, the stator winding produces an alternating magnetic field having maximum magnitude of Φ 1m .        According to double revolving field theory, consider the two components of the stator flux, each having magnitude half of maximum magnitude of stator flux i.e. (Φ 1m /2). Both these components are rotating in opposite directions at the synchronous speed N s which is dependent on frequency and stator poles.        Let Φ f  is forward component rotating in anticlockwise direction while Φ b  is the backward component rotating in clockwise direction. The resultant of these two co...

Equivalent Circuit of Single Phase Induction Motor

Image
SINGLE PHASE INDUCTION MOTOR The double revolving field theory can be effectively used to obtain the equivalent circuit of a single phase induction motor. The method consists of determining the values of both the fields clockwise and anticlockwise at any given slip. When the two fields are known, the torque produced by each can be obtained. The difference between these two torques is the net torque acting on the rotor.          Imagine the single phase induction motor is made up of one stator winding and two imaginary rotor windings. One rotor is rotating in forward direction i.e. in the direction of rotating magnetic field with slip s while other is rotating in backward direction i.e. in direction of oppositely directed rotating magnetic field with slip 2 - s.         To develop the equivalent circuit, let us assume initially that the core loss is absent. 1. Without core loss Let...